III B. TECH I SEMESTER REGULAR EXAMINATIONS, NOVEMBER - 2022 ADVANCED STRENGTH OF MATERIALS (Civil Engineering)

Time: 3 Hours

Max. Marks: 70

Note: Answer ONE question from each unit $(5 \times 14 = 70 \text{ Marks})$

UNIT-I

- 1. a) Define and explain the maximum principal stress theory. [7M]
 - b) At a point in a material, the stresses on two mutually [7M] perpendicular planes are 80N/mm² (tensile) and 40 N/mm² (tensile). The shear stress across these planes is 60N/mm². Find magnitude and direction of the resultant stress on a plane making an angle of 45° with the plane of the first stress. Find also, the normal and tangential stresses on this plane.

(OR)

- 2. a) Define and explain the maximum principal strain theory. [7M]
 - b) The stresses at a point in a bar are 200N/mm² (tensile) and 100 [7M] N/mm² (compressive). Determine the resultant stress in magnitude and direction on a plane inclined at 60° to the axis of the major stress Also determine the maximum intensity of shear stress in the material at the point.

UNIT-II

- 3. a) State the assumptions made in Euler's theory and also write the [7M] limitations.
 - b) Find the shortest length L for pin ended steel column having a [7M] cross section of 60mmx100mm for which Euler's formula applies. Take $E_s=2x10^5$ N/mm² and critical proportional limit is $250N/mm^2$.

(OR)

- 4. a) What do you mean by end conditions of a column? Write [7M] effective length of column for various end conditions.
 - b) Find Euler's critical load for a hollow cylindrical cast iron [7M] column 200mm external diameter and 25mm thick, if it is 6m long and hinged at both ends. Take E=8x104 N/mm².

Compare Euler's Critical load with the Rankine's critical load taking fc=550N/mm² and α =1/1600.

UNIT-III

5. a) Explain the conditions for stability of dam. [7M]

Page **1** of **2**

R20

b) A masonry chimney 18m high is of circular section, the external [7M] and internal diameters of the section being 6m and 3m respectively. The chimney is subjected to a horizontal wind pressure of 1500N/m² of the projected area. Find the maximum and minimum stress intensities at the base. Take the weight of masonry as 21kN/m³.

(OR)

- 6. a) Explain the following termsi. Core or kernel of a section
 - ii. Limit of eccentricity
 - b) A Retaining wall 2m wide at top and 8m wide at bottom and [7M] 10m high is subjected to earth pressure on the back. If the weight of masonry is $25kN/m^3$, and weight of earth retained is $16kN/m^3$ and angle of repose is 30° is horizontal and level with the top of the wall, Find maximum and minimum stress intensities at the base. Examine the stability of the wall if μ =0.62.

UNIT-IV

- 7. a) Explain the stresses induced due to unsymmetrical bending. [8M]
 - b) Define principal axes and principal moment of inertia. [6M]

(OR)

- 8. a) Define shear centre. Write the shear centre equation for [7M] unsymmetrical I section.
 - b) A channel Section has flanges 12 cm x 2 cm and web 16 cm x [7M] 1 cm. Determine the shear centre of the channel.

UNIT-V

- 9. a) What is mean by Circumferential stress (or hoop stress) and [7M] Longitudinal stress? Derive an expression for the longitudinal stress in a thin cylinder subjected to an uniform internal fluid pressure.
 - b) The air vessel of a torpedo is 100cm external diameter and 1cm [7M] thick, the length being 5000mm.Find the change in the external diameter and length when changed to 3 N/mm² internal pressure. Take E=2.1x10⁵ N/mm² and poisons ratio=0.3.

(OR)

- 10. a) What do you mean by Lame's equations? How will you derive [7M] these equations?
 - b) A pipe of 200mm internal diameter and 100mm thickness [7M] contains a fluid at a pressure of 6 N/mm².Find the maximum and the minimum hoop stress across the section.

* * * * *

R20