III B. TECH I SEMESTER REGULAR EXAMINATIONS, NOVEMBER -2022 ADVANCED STRENGTH OF MATERIALS
 (Civil Engineering)

Time: 3 Hours
Max. Marks: 70
Note: Answer ONE question from each unit ($\mathbf{5} \times \mathbf{1 4}=\mathbf{7 0}$ Marks)

UNIT-I

1. a) Define and explain the maximum principal stress theory.
b) At a point in a material, the stresses on two mutually
perpendicular planes are $80 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) and $40 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile). The shear stress across these planes is $60 \mathrm{~N} / \mathrm{mm}^{2}$. Find magnitude and direction of the resultant stress on a plane making an angle of 45° with the plane of the first stress. Find also, the normal and tangential stresses on this plane.
(OR)
2. a) Define and explain the maximum principal strain theory.
b) The stresses at a point in a bar are $200 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) and 100 $\mathrm{N} / \mathrm{mm}^{2}$ (compressive). Determine the resultant stress in magnitude and direction on a plane inclined at 60° to the axis of the major stress Also determine the maximum intensity of shear stress in the material at the point.

UNIT-II
3. a) State the assumptions made in Euler's theory and also write the limitations.
b) Find the shortest length L for pin ended steel column having a cross section of 60 mmx 100 mm for which Euler's formula applies. Take $\mathrm{E}_{\mathrm{s}}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and critical proportional limit is 250N/ mm^{2}.
(OR)
4. a) What do you mean by end conditions of a column? Write [7M] effective length of column for various end conditions.
b) Find Euler's critical load for a hollow cylindrical cast iron column 200 mm external diameter and 25 mm thick, if it is 6 m long and hinged at both ends. Take $\mathrm{E}=8 \mathrm{x} 104 \mathrm{~N} / \mathrm{mm}^{2}$.
Compare Euler's Critical load with the Rankine's critical load taking $\mathrm{fc}=550 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{a}=1 / 1600$.

UNIT-III

5. a) Explain the conditions for stability of dam.
b) A masonry chimney 18 m high is of circular section, the external and internal diameters of the section being 6 m and 3 m respectively. The chimney is subjected to a horizontal wind pressure of $1500 \mathrm{~N} / \mathrm{m}^{2}$ of the projected area. Find the maximum and minimum stress intensities at the base. Take the weight of masonry as $21 \mathrm{kN} / \mathrm{m}^{3}$.
6. a) Explain the following terms
i. Core or kernel of a section
ii. Limit of eccentricity
b) A Retaining wall 2 m wide at top and 8 m wide at bottom and 10 m high is subjected to earth pressure on the back. If the weight of masonry is $25 \mathrm{kN} / \mathrm{m}^{3}$, and weight of earth retained is $16 \mathrm{kN} / \mathrm{m}^{3}$ and angle of repose is 30° is horizontal and level with the top of the wall, Find maximum and minimum stress intensities at the base. Examine the stability of the wall if $\mu=0.62$.

> UNIT-IV
7. a) Explain the stresses induced due to unsymmetrical bending.
b) Define principal axes and principal moment of inertia.
(OR)
8. a) Define shear centre. Write the shear centre equation for unsymmetrical I section.
b) A channel Section has flanges $12 \mathrm{~cm} \times 2 \mathrm{~cm}$ and web $16 \mathrm{~cm} \times$ 1 cm . Determine the shear centre of the channel.

UNIT-V
9. a) What is mean by Circumferential stress (or hoop stress) and Longitudinal stress? Derive an expression for the longitudinal stress in a thin cylinder subjected to an uniform internal fluid pressure.
b) The air vessel of a torpedo is 100 cm external diameter and 1 cm thick, the length being 5000 mm . Find the change in the external diameter and length when changed to $3 \mathrm{~N} / \mathrm{mm}^{2}$ internal pressure. Take $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and poisons ratio=0.3.
(OR)
10. a) What do you mean by Lame's equations? How will you derive [7M] these equations?
b) A pipe of 200 mm internal diameter and 100 mm thickness contains a fluid at a pressure of $6 \mathrm{~N} / \mathrm{mm}^{2}$. Find the maximum and the minimum hoop stress across the section.

